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Phase Retrieval of Gyrotron Beams Based on
Irradiance Moments

James P. Anderson, Michael A. Shapiro, Richard J. Temkin, Fellow, IEEE, and Douglas R. Denison

Abstract—We present the formulation of the moment method
applied to the determination of phase profiles of microwave
beams from known amplitudes. While traditional approaches
to this problem employ an iterative error-reduction algorithm,
the irradiance moment technique calculates a two-dimensional
polynomial phasefront based on the moments of weighted intensity
measurements. This novel formulation has the very important
advantage of quantifying measurement error, thus allowing for
its possible reduction. The validity of the irradiance moment
approach is tested and confirmed by examining a simple case of an
ideal Gaussian beam with and without measurement errors. The
effectiveness of this approach is further demonstrated by applying
intensity measurements from cold-test gyrotron data to produce
a phasefront solution calculated via the irradiance moment tech-
nique. The accuracy of these results is shown to be comparable with
that obtained from the previously developed iteration method.

Index Terms—Gaussian beam, gyrotron, irradiance moments,
phase retrieval.

I. INTRODUCTION

M ICROWAVES generated from a gyrotron in high-order
waveguide modes must be transformed into a low-order

symmetrical mode for transmission and application. Either a
Vlasov launcher [1] or its modification, a rippled-wall Denisov
launcher [2], radiates the microwave energy extracted from
bunched electrons. The microwave beam is then shaped and
directed using a series of internal mode converter reflectors
comprised of phase correctors and simple focusing mirrors.
The configuration shown in Fig. 1, which represents the layout
of a 1-MW 110-GHz gyrotron [3], uses a system of two doubly-
curved reflectors ( and ) and two phase-correcting
reflectors ( and ) [4]. After the resultant beam propa-
gates through the output window, the beam typically undergoes
additional phase correction and/or focusing to further convert
it to a Gaussian beam. Gaussian beams are advantageous
since they may be focused and redirected using simple optical
components. Additionally, the beam profile of a Gaussian beam
matches well with the fundamental -mode profile in a
corrugated waveguide.
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Fig. 1. Gyrotron internal-mode converter schematic.

A common approach to design the phase correctors is to use
either analytical or numerical techniques to approximate the
radiation pattern emitted from the launcher. Attempts have been
made, for example, to model the radiated fields generated from
the rippled-wall launcher [5]. However, experimental results
have shown that the measured field profile does not agree
with predicted beam behavior at the gyrotron window [3]. The
discrepancies between theory and experiment may occur from
problems with launcher alignment or from problems with the
launcher theory itself.

To fully account for the field radiated from the internal mode
converter, cold-test intensity measurements are taken initially,
without the presence of an electron beam in vacuum, using a
high-order mode generator. The low-power quasi-optical mi-
crowave beam radiated from the launcher can be used to de-
sign the correcting mirrors. These mirror designs, however, re-
quire knowledge of the free-space propagation behavior of the
beam, characterized by both the amplitude and phase. While
the amplitude profile can be directly measured at low power
using a spatial scanner with a receiving horn and detector, the
phasefront (at frequencies above 100 GHz) cannot be so easily
determined. Therefore, numerical methods are ordinarily em-
ployed to retrieve the phase based on a series of measured in-
tensity data taken at several planes located past the launch point.
Fig. 2 shows a schematic of a cold-test gyrotron experimental
setup, which may be used to design appropriate external phase-
correcting mirrors. A series of measurement planes, shown as
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Fig. 2. Cold-test measurement plane schematic near the location of the
gyrotron window.

dotted lines, lie immediately before and after the window loca-
tion where the beam is the narrowest (the beam waist) [6]. In the
actual cold test, the window is omitted from the setup. Examples
of discretely sampled measured data on a series of planes are
presented in Section V. Alternatively, in the hot test, in which
high-power microwaves are generated from an electron beam,
data can be taken on a series of planes beyond the window plane
with an infrared camera viewing a microwave absorbing screen.

Several methods have been developed to retrieve the mi-
crowave output phase based on intensity measurements. The
more traditional approach, based on the Gerchberg–Saxton for-
mulation [7], uses an iterative algorithm. This method attempts
an initial approximation of the phase at the first measurement
plane and then propagates this paraxial beam forward to the
next measurement plane using a Fourier transform inter-plane
wave propagation routine [8]. Using the assumed phase of the
resultant beam with the measured intensity at this plane, the
beam is then propagated back to the initial plane. The initial
phase approximation is then modified to compensate for the
error between the measured and reconstructed amplitudes [9],
[10]. Through numerous repetitions the phase solution gener-
ally converges until the amplitude error is minimized [10], [11].
This error-reduction approach, known as the iteration method
(or “phase-retrieval method”), although numerically intensive,
has proven to be successful in designing accurate internal phase
correcting mirrors [6], [12] and external mirrors [12]–[14].

An added advantage of using intensity measurements is the
valuable information gained from computing the normalized
weighted moments, or expectation values. The moments are
useful to improve the reliability of the data and for phase
retrieval, especially when the data set is taken using an infrared
camera in hot tests, since phase-retrieval methods are typically
sensitive to misalignment. Since measurements at different
planes require moving the camera and target, alignment errors
are not uncommon. Moreover, the work space is typically
limited, which forces frequent repositioning of the system. In
[15], the moments of infrared images of gyrotron radiation were
calculated to determine the accuracy of the spatial alignment of
the images. The iterative phase-retrieval procedure and internal
mirror synthesis [6] were employed using only the well-aligned
images.

A phase-retrieval algorithm based solely on these moments
may prove to yield even more accurate results while being com-
putationally more efficient [16]. This “irradiance moment” ap-

proach assumes an initial two-dimensional (2-D) polynomial
phasefront, which is predominately parabolic, but with addi-
tional higher order phase aberrations. The coefficients of the
polynomial are calculated from the weighted moments based
on intensity distributions over several measurement planes. Al-
though employed in optics for applications such as character-
izing the beam quality of high-power multimode lasers [17],
this numerical method, to our knowledge, has never before been
applied to the phase retrieval of a microwave beam. The mi-
crowave problem is recognized as more difficult than optical
applications because of diffraction.

In the following sections, the theory behind the irradiance
moment technique will be briefly presented, along with the gen-
eralized approach for retrieving the phase. The success of this
scheme is then demonstrated numerically using both a simple
Gaussian beam and previously generated gyrotron cold- test
data. The final section will discuss future developments for the
irradiance moment technique.

II. PHASE-RETRIEVAL BASED ON MOMENT TECHNIQUES

The basic idea behind any phase-retrieval method is to de-
termine the initial phase from intensity measurements near the
beam waist. While commonly used Gerchberg–Saxton iteration
methods rely on repeatedly improving an initial phase approx-
imation to reduce amplitude error [9], the irradiance moment
technique attempts to solve the initial phase polynomial coeffi-
cients from the weighted moments. Both approaches make use
of Fresnel diffraction theory to propagate the beam, assuming
the beam is linearly polarized and propagates paraxially. How-
ever, the iteration method advances the amplitude and phase
of the beam, whereas the irradiance moment technique propa-
gates the moments of the beam. Using the moment approach, we
present the relationship between the phase at a fixed plane and
irradiance moments propagating orthogonally from this plane.
Although this relationship is generally nonlinear, we may form
a set of solvable relations from the linear terms of the moments.
After calculating the moments and predicting how they propa-
gate, we then apply these linear relations to determine the phase.

To be consistent with the geometry shown in Figs. 1 and 2, we
will assume the paraxial beam propagates along the-direction.
The -axis is reserved as the axis of the gyrotron. The behavior
of the wave at a particular axial location, which includes am-
plitude and phase , can be described by its wave function,
or complex amplitude , where .

The moments of the wave function are based on the normal-
ized weighted intensity integrated over the finite measurement
plane at an axial location. They are defined as

(1)

where the integration is performed over all’s and ’s.
It is important to note that a numerical approximation of the

irradiance moment technique (and, indeed, of any phase-re-
trieval method relying on intensity measurements) must be
made from the fact that the measurement planes are finite.
Theoretically, the moments are calculated by integrating over
an infinite plane. For the integrals in the irradiance moment
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technique to be completely accurate, the amplitude at the plane
edges must be zero. In practice, beam information outside of the
plane limits is lost. This truncation introduces an error into the
calculation of the moments, particularly higher order moments.
For example, if a Gaussian beam is truncated to 20 dB below
the peak value, then the error in the fourth-order moments is
over 10%. If the measurements are truncated to 28 dB, this
error decreases to 2%. Of course, if the measurement plane is
chosen very large, such that the truncation is at 35 dB, then
the fourth-order moment error is a very small number, around
0.5%.

The Kirchhoff–Huygens diffraction integral in its Fresnel ap-
proximation describes a paraxial beam at any distance in terms
of the initial wave function [18]

(2)

where is the wavelength and is the wavenumber. By
applying the definition of moments [see (1)] to the diffraction
integral, we can show how the moments change as the beam
propagates [19], [20] as follows:

(3)

where is the analytic complex
amplitude at the initial plane and is its
complex conjugate. This formula yields an expression for the
propagation behavior of the moments. Furthermore, it relates the
moments at any given axial location to the initial phase. Explicit
expressions are listed in the Appendix for the first- and second-
order moments.

From (3), the moment is, in general, a one-dimen-
sional polynomial along the direction of propagationwith
order and coefficients as follows:

(4)

The moment polynomial coefficients are determined
by a combination of the initial amplitude and phase and their
derivatives integrated over the measurement plane. In practice,
the data set is analyzed by finding a series of values at sev-
eral planes along. The calculated values are then applied
to a one-dimensional polynomial fit in to obtain the moment
polynomial coefficients up to , the polynomial
order. This technique is illustrated in Section IV.

From (3) and (4), we can show that the linear coefficient of
any moment order , which measures the slope of the mo-
ment at the retrieval plane, may be expressed as a product of the
initial intensity and weighted initial phase derivative integrated
over the -plane

(5)

A set of linear equations may be created from the linear
moment coefficients by assuming an appropriate form for
the phasefront. For a spatially directed microwave beam,
the phasefront can be expanded as a 2-D polynomial at the
reference transverse ()-plane with coefficients

(6)

The series in (6) converges for beams decaying exponentially
in the transverse direction. One way to show this is by applying
the uniform stationary phase method [21].

The linear moment coefficients are linear functions
of the phase expansion coefficients and the initial amplitude
moments, represented here as the intercept coefficients,
where . This linear dependence is shown in
the example provided in the Appendix. Linearized equations
are formed because, from (5) and the selection of a suitable
polynomial phasefront expansion, the slope of each moment
propagating in is linear with respect to the phase expansion
coefficients in the transverse ()-plane.

The phasefront expansion of must be truncated to form
a set of solvable linear equations from the expressions relating
the linear moment coefficients to the phase coefficients. This
approximation is valid due to the fact that the gyrotron beam
is directed and paraxial. For well-behaved paraxial beams, the
phasefront described by (6) is primarily parabolic and nearly
symmetrical. Therefore, the and coefficients are the
dominant terms in the polynomial phasefront expansion. Higher
order aberrations are included to provide an accurate phasefront
solution. Generally, the solution is more accurate if many phase
expansion terms are included. As mentioned earlier, however,
the series in (6) will converge for directed beams. Only the first
few higher order phase expansion terms are necessary to pro-
vide an accurate solution.

The set of equations is closed and solvable by requiring that
the maximum moment order of the calculated linear coef-
ficients or be equal to the order of the truncated 2-D trans-
verse plane phase expansion in, which is defined as . In
other words, . The number
of equations that are formed is simply the summation of the
number of unknown phase expansion coefficients. Since each

th expansion in has coefficients

Number of Equations (7)
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The phase is calculated by first truncating the phasefront at
the initial plane to order , which specifies the number of
phase expansion coefficients . The moments are di-
rectly calculated from intensity measurements at several planes

for every and up to . Each of these mo-
ments is then fitted over to a one-dimensional polynomial of
order to determine the moment coefficients up to

. Only the linear coefficients and the coeffi-
cients of zero rank , which represent the slope and moment
intercept, respectively, are required to form a series of linear
equations, which ultimately determine the phase expansion co-
efficients.

Since each of the moments is fitted overto polynomials of
order , the number of planes (data) required by the ir-
radiance moment technique must be at least . Since

, then the minimum number of
planes is for an th order 2-D polynomial phasefront
solution. More data planes may be used to insure a better mo-
ment fit and, thus, a more accurate solution. If fewer planes are
used, however, the solution is indeterminate and an erroneous
solution may occur. Since there will not be enough data in this
instance to fit to the moment polynomials, the solution will not
be unique.

After the phasefront has been determined at the initial
plane, external reflectors may be designed to correct for the
phase and amplitude of the gyrotron output, and to effectively
couple power to the fundamental mode of a corrugated
waveguide for guided transmission. In the procedure of re-
flector synthesis, we can take advantage of the irradiance
moment-method approach’s phasefront solution, which is in
analytical form. Therefore, the numerical procedure of phase
unwrapping, required for reflector synthesis using the iteration
method [6], is not needed using irradiance moments. This
improves the mirror shaping because phase unwrapping is
ambiguous.

III. OUTLINE OF THE IRRADIANCE MOMENT APPROACH

The procedure for finding a unique phasefront solution using
the irradiance moment technique is fairly straightforward. The
general steps for finding an th order unique phase solution is
as follows.

Step 1) Normalize all the measured intensity planes such
that at each location.

Step 2) Calculate the moment numerically at each
plane, including the initial plane by ap-
plying a discrete integration routine to the weighted
amplitude data.

Step 3) Generate a one-dimensional polynomial fit inof
order for the moment.

Step 4) Repeat steps 2 and 3 for each moment up to
.

Step 5) Propagate the moments analytically by applying
Fresnel diffraction theory. Specifically, the linear
moment coefficients must be expressed in
terms of the initial phase [ see (5)].

Step 6) Expand and truncate the initial phasefrontas an
th order 2-D polynomial in the -plane.

Step 7) Find a linear analytical expression for each of the
linear moment coefficients from step 5 in terms
of the phase expansion coefficients from step 6
and the moments at the initial plane repre-
sented by .

Step 8) Solve the set of linear equations for the phase expan-
sion coefficients using the moment coefficients
from the polynomial moment fits in.

IV. I RRADIANCE MOMENT RESULTS: TECHNIQUE

GAUSSIAN BEAM

A. Ideal Gaussian Beam

The advantages and limitations of the irradiance moment ap-
proach are demonstrated by testing the algorithm with both an
ideal Gaussian beam and a series of existing measured gyrotron
intensity data. The results obtained from the iteration method
are also presented for comparison.

For the ideal Gaussian case, a beam is chosen with
cm and a waist of 2.0 cm at . Five planes con-

taining discretized ideal Gaussian amplitude data are generated
for the phase-retrieval calculations at and

cm. After the phase is retrieved at the initial plane cm,
the amplitude and computed phase are propagated to an obser-
vation plane cm. A propagation routine based on
the 2-D discretized fast Fourier transform calculates the beam
wave function at any axial location given the initial amplitude
and phasefront solution. The reconstructed complex amplitude
at the observation plane may then be compared with the theo-
retical Gaussian amplitude and phase.

Since five amplitude planes are used in the irradiance moment
technique phase-retrieval algorithm, it is possible to assume a
fourth-order phasefront 2-D polynomial at the initial cm
plane. However, this expansion is not necessary since the phase-
front of an ideal Gaussian beam is parabolic and will not con-
tain higher order aberrations. A second-order phasefront poly-
nomial is more appropriate for the calculations. A
set of five linear equations [see (7)] based on the five first- and
second-order moments are required to solve the unknown phase
coefficients and . These equations are de-
rived explicitly in the Appendix. Note that this algorithm in prin-
ciple requires only three data planes since . Five planes
are included to provide more data with which to accurately fit
the moments and to be consistent with the other example in this
section.

To understand how the irradiance moment approach works
in this simple Gaussian case, we must examine the behavior of
the moments. The first-order moments and are mea-
sures of the expectation values or and , respectively. They
indicate where the center of the beam is located. For the ideal
Gaussian case, they are at zero for all planes since the beam
does not drift. The values of the linear polynomial coefficients
are zero everywhere, i.e., the slopes are zero
and the intercepts are zero .

The second-order moments and are not as
simple to understand. Physically, these moments represent the
size of the beam in and . For a symmetric beam,
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Fig. 3. Second-orderM moments are fitted to a quadratic iny. The
coefficients of the fit originated at the retrieval plane (y = 20 cm) are listed in
the plot.

everywhere since there is no coupling betweenand .
The coefficients for this moment polynomial ( and

) are zero. The other second-order moments and
follow a quadratic describing the beam growth over distance.
The calculated moments at each of the five planes are
shown in Fig. 3. Note the predicted moment value at

cm is 1.0 cm, which accurately reflects the beam waist
( cm).

As seen in the example in Fig. 3, the polynomial coefficients
of each moment at the phase-retrieval plane ( cm) are
easily determined. Recall only and are needed to cal-
culate the phasefront.

The irradiance moment 2-D phasefront solution that uses the
fitted moment coefficients in the set of five linear equations is

cm and . The
calculated phasefront at cm has the form

cm cm (8)

From the radius of curvature formula based on the theory of
Gaussian optics, the phasefront should have the following solu-
tion:

(9)

Evaluating this expression at cm using the given beam
parameters yields cm . Therefore, by
testing the moment method with artificial Gaussian beam data,
we have verified that the irradiance moment technique produces
an accurate solution for this simple example.

The intensity at the observation plane ( cm) was
reconstructed using the phasefront computed by the irradiance
moment approach, as described above. In addition, we obtained
a phasefront solution by applying the iteration method algorithm
to the artificial Gaussian data. The reconstructed intensity based
on this converged solution was also calculated at the observation
plane. The results of both methods are compared in Fig. 4. Both
algorithms accurately reconstruct the amplitude, although the
irradiance moment approach produces a more accurate beam

Fig. 4. Mid-plane ideal Gaussian intensity profile at the observation plane
(y = �30 cm) is compared with the reconstructed amplitudes using the
iteration method and irradiance moment technique near the edge of the beam.

below 40 dB. This is not surprising since the iteration method
attempts to reduce the error below an acceptable tolerance level,
whereas the moment method provides a more exact one-step
numerical solution.

B. Gaussian Beam With Uncorrected Offset Measurement
Error

While the ideal Gaussian case confirms the validity of the ir-
radiance moment approach, it is a trivial exercise. More insight
may be gained from manufacturing a simple case where mea-
surement error has occurred. Errors in the form of shifted or
offset data are common when using laboratory devices such as
an infrared camera to measure intensity. It is important, there-
fore, to examine how such an error affects the phase-retrieval
process.

To examine offset error, the same five planes containing ideal
Gaussian amplitude data are used as in the previous example.
Error is introduced at the cm plane, where the beam is
shifted in the -direction by 0.7 cm, a distance greater than
two wavelengths. Such a shift is not physical since the beam
must travel in a straight line, yet the error could occur in an
experiment if an infrared camera and viewing screen were mis-
aligned. As before, a second-order polynomial phasefront form
is solved at the initial cm plane.

Since the beam is shifted, is zero for all , except at
cm, where cm cm. The best linear fit of

the first-order or moment is also shifted to reflect the
increased average value over all five moments. Therefore,
while the coefficient or slope does not change, the
value is raised slightly to the averaged value of the mo-
ments, i.e., 0.14 cm. Since there is no shift in the-direction,

is still zero everywhere.
Since the introduction of an offset error does not change the

size of the beam, the second-order moments are exactly the same
as before. The moments, for example, follow a smooth
quadratic with or without an offset in the data (Fig. 3). The
and coefficients that are determined from this fit do not
change.
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Fig. 5. Intensity profiles nearx = 0 at the observation plane reconstructed
from the irradiance moment technique and the iteration method for the case
where offset measurement error has occurred at they = 40 cm plane.

The phasefront solution computed from the set of equations
using the artificial data with offset becomes

cm cm

cm (10)

Note that, in (10), there is a term linear inthat arises from
the offset error and is missing in the ideal case of (8). The phase
solution now has a slight tilt and asymmetry.

The theoretical Gaussian intensity at the observation plane is
again compared with the reconstructed amplitude obtained from
the irradiance moment technique (Fig. 5). A phasefront solu-
tion and reconstructed intensity were also obtained by applying
the iteration method algorithm to the same data. The iteration
method intensity profile is shown for comparison.

Although the beam that is reconstructed using the irradiance
moment algorithm has little width distortion, it does shift in the
positive -direction, albeit by a small amount. To understand the
reason this shifting occurs in the irradiance moment phasefront
solution, each moment must be examined. As mentioned earlier,
the second-order moments do not change with the addition of
an offset error. The first-order moment polynomial fits, on the
other hand, are altered when an offset error occurs at one or
more planes. In this case, the (40 cm) moment increases to
0.7 cm due to the -direction shift in the beam centroid at that
plane.

The reconstructed profile from the iteration method in Fig. 5
is shifted more noticeably in the -direction and the width
more distorted than the irradiance moment reconstructed pro-
file. The shift arises from a tilt introduced in the phasefront
solution at the initial plane as part of the iteration algorithm’s
attempt to compensate for the offset plane. The width distor-
tion arises from the ellipticity of the beam seen by viewing the
superposition of nonconcentric circles. In addition, more noise
is present due to the fact that the algorithm has difficulty con-
verging to a unique solution for this case. In fact, for offset mea-
surement errors greater than three wavelengths, the iteration al-
gorithm does not converge at all.

C. Gaussian Beam With Corrected Offset Measurement Error

Although the results of the previous case including offset
measurement error are not dramatically different from the
ideal case, it is possible to correct these errors by examining
the moments. This error-correcting feature of the irradiance
moment technique is its main advantage over other phase-re-
trieval methods. For example, the moment at is
easily identified as measurement error since it is not physically
possible for the beam centroid to travel in a path other than a
straight line. The intensity at this plane may be shifted in the

-direction such that the (40 cm) moment is aligned with
the other four moments. The phase retrieved by the irradiance
moment approach in this corrected case reverts back to the
original solution obtained using the ideal Gaussian beam [see
(8)].

It is also possible to improve the irradiance moment phase
solution by selective data omission. If the cm plane is not
included in the data set, only four planes are used to retrieve the
phase. These four planes, however, will still be able to produce
the ideal Gaussian second-order polynomial phasefront solution
since the data set will now lack measurement error.

V. IRRADIANCE MOMENT TECHNIQUE RESULTS:
COLD-TEST GYROTRON DATA

The irradiance moment approach is further explored by
testing the algorithm with measured gyrotron intensity data.
Namely, the input is taken from the cold test results of a
1-MW 110-GHz gyrotron built by Communications and Power
Industries (CPI), Palo Alto, CA. The discretely sampled data
form a set of eight intensity measurements at various locations
from the window cm (Fig. 6).
The paraxial beam radiated by the internal mode converter (see
Fig. 1) is centered at cm cm , which is on
axis with the window center.

In principle, a seventh-order polynomial phase expansion
may be applied to the algorithm since eight planes are avail-
able. However, the phasefront is only expanded to fourth-order

to simplify the system to a set of 14 equations [see
(7)]. In addition, the accuracy of a seventh-order polynomial
moment fit, which would be required for a seventh-order 2-D
phasefront solution, would be limited using only eight data
planes.

To find the solution to a unique fourth-order 2-D phase ex-
pansion with the irradiance moment approach requires at least

or five planes. To obtain accurate polynomial fits of the
various moments, the first seven planes are used in the calcula-
tions. The phase is retrieved at the initial ( cm) plane by
fitting each moment to an appropriate polynomial inusing the
seven planes. It is convenient here to reserve the final cm
plane as the observation or check plane.

After the initial phase is constructed, the approximated wave
function may then be propagated from the cm plane
using the measured initial intensity and the 2-D phasefront ex-
pansion computed from the irradiance moment technique. To
test the accuracy of the solution computed by the fourth-order
irradiance moment scheme, the beam is advanced to the obser-
vation plane cm. A normalized error is then calcu-
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Fig. 6. Contour intensities of the eight measurement planes are shown from
the CPI gyrotron in a cold test. The window center is atz = 37:4 cm, x =

0 cm. Contours of constant intensity are at 3-dB intervals from peak. All axial
distancesy are referenced from the window plane.

lated between the method’s computed amplitude and
the measured amplitude at this plane

(11)

Applying the error equation to the beam that was recon-
structed from the irradiance moment technique, we find

at cm. Using the same data in the iteration method
algorithm, the error is 0.015. Both methods yield a very
small error at the observation plane, with the iteration method
error somewhat smaller than the error from the irradiance
moment approach. While this result is not immediately obvious
in a comparison of the reconstructed intensity contour plots at

cm (Fig. 7), the intensity profiles along thetransverse
direction shown in Fig. 8 demonstrate that the irradiance
moment phasefront solution predicts a slightly narrower beam
at the observation plane than measured.

The reason the reconstructed beam has a narrower waist than
expected (Fig. 8) may be explained by the second-order mo-
ments, which indicate the beam size. The quadratic fit of ,
for example, if extended to the observation plane, predicts a
lower moment value than the moment value of the measured
intensity pattern. The reason for this discrepancy is small mea-
surement errors.

(a)

(b)

Fig. 7. (a) Measured intensity contour plot at the observation plane
y = 60 cm. The left half of (b) is the reconstructed intensity using the
irradiance moment approach and the right half is the reconstructed intensity
using the iteration method.

Fig. 8. y = 60 cm profile at mid-plane is shown alongx for the measured and
reconstructed intensities.

It is evident from the first- and second-order moments in
and , shown in Fig. 9, that at least some measure-

ment error has occurred since the seven first-order moments do
not precisely follow a linear fit and the seven second-order mo-
ments do not follow a perfect quadratic fit. This error is reflected
by experimental inaccuracies in both the beam drift and size
at several (or all) planes. These measurement errors limit the
overall accuracy of the moment-method phasefront solution.
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(a)

(b)

Fig. 9. Beam centroidhxi is plotted versus propagation distancey in (a) and
the beam sizehx i is plotted versusy in (b). These points must lie on a straight
line and quadratic, respectively, with the deviation indicating experimental error.

It should be mentioned that the results obtained by the irradi-
ance moment algorithm may also be improved if the 2-D phase-
front solution is expanded to fifth or sixth order. While the mea-
surement errors would not be reduced, the addition of higher
order aberrations could compensate for these inaccuracies. Such
approaches, however, would require increasingly large and cum-
bersome sets of equations. The effectiveness of adding higher
order terms to the phasefront expansion is questionable.

VI. CONCLUSION

The theory and general method for retrieving the phase of
gyrotron beams based on weighted amplitude moments has
been presented. In addition, the success of this moment method
has been demonstrated by testing the algorithm with an ideal
Gaussian beam, a Gaussian beam with one offset plane, and
with measured data. Furthermore, the irradiance moment ap-
proach has been benchmarked against the previously developed
iteration method. The amplitude errors produced from the
irradiance moment approach were comparable with those from
the iteration method in each case even without error correction.

The main advantage of the phase-retrieving irradiance mo-
ment technique is its ability to locate and compensate for signifi-
cant measurement errors. In addition, the irradiance moment ap-
proach produces an analytical solution and eliminates the need
for computationally intensive iterative calculations to produce
accurate results.

As discussed in this paper, the irradiance moment technique
is a powerful tool for determining the accuracy of the images
used in a phase-retrieval analysis. In this paper, the example of
a gyrotron cold test beam was found to have relatively small er-
rors. In that case, the retrieved phase is quite accurate. There
is very little improvement in accuracy, if any, to be gained by
attempting to reject data planes that are slightly misaligned. In
previous work on external phase correcting mirrors for a gy-
rotron in use at the large helical device (LHD) stellarator, Na-
tional Institute for Fusion Science, Toki, Japan, we found that a
large improvement was possible if planes that were out of align-
ment were rejected. That work is described in [15].

While initial results indicate the effectiveness of the irradi-
ance moment approach, modifications may be made to enhance
the algorithm and improve its performance. A nonlinear ap-
proach to solving the phase coefficients may increase the ac-
curacy of the solution. This nonlinear irradiance moment tech-
nique would require the moment coefficients of higher rank dis-
carded in the linear version. Finally, an “iterative irradiance mo-
ment method” may be developed, which incorporates ideas from
both phase-retrieval algorithms. These topics could be the sub-
ject of future research.

The present examples show that the irradiance moment
technique, previously limited to phase-retrieval problems in
the optical regime, can be successfully applied to retrieving the
phase of microwave beams. It is a promising new approach to
an old problem. This method may become a novel and powerful
numerical method to predicting gyrotron beam behavior and
shaping phase-correcting mirrors. However, further research
is needed to estimate the accuracy of the technique, including
research on random noise, more complex measurement errors,
and beams with more complex amplitude forms.

APPENDIX

FIRST- AND SECOND-ORDER MOMENTS

Here, we will present an example of the irradiance moment
technique using the first- and second-order moments. After the
moments are expanded in terms of the initial phase, the initial
phasefront is expanded and substituted into the expressions. Fi-
nally, the linear set of equations is obtained after the phasefront
is properly truncated.

Deriving explicit expressions for the moments is straightfor-
ward. The first- and second-order moments are as
follows [ from (2)]:



1534 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 50, NO. 6, JUNE 2002

Note that, by definition, . By generalizing and re-
naming the coefficients [see (4)], these five moments are
restated as

The moment coefficients required for the irradiance moment al-
gorithm and are determined from the data by fitting
each moment to its appropriate polynomial.

Continuing our example, the following are expressions for
the linear moment coefficients of the moments ,
where [also derivable from (5)]:

By substituting the 2-D polynomial expansion for the phase
[see (6)], the linear moment coefficients in our example become

Recognizing that the integrations in the equations relating
to the initial phase are the moments at the initial plane,

the coefficients can be restated as follows:

A further simplification may be made by substituting in the
coefficients of zero rank in place of the moments at the initial
plane since, from (4), . Finally, the phasefront
is truncated to the appropriate order, in this case,

. The set of equations then becomes

This set of equations is linear and solvable. After the moment
coefficients and are computed from the data, the
phase coefficients and , which describe
the initial parabolic phasefront, are then easily obtainable.
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