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Phase Retrieval of Gyrotron Beams Based on
Irradiance Moments
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Abstract—We present the formulation of the moment method
applied to the determination of phase profiles of microwave
beams from known amplitudes. While traditional approaches
to this problem employ an iterative error-reduction algorithm,
the irradiance moment technique calculates a two-dimensional
polynomial phasefront based on the moments of weighted intensity
measurements. This novel formulation has the very important
advantage of quantifying measurement error, thus allowing for
its possible reduction. The validity of the irradiance moment
approach is tested and confirmed by examining a simple case of an
ideal Gaussian beam with and without measurement errors. The
effectiveness of this approach is further demonstrated by applying
intensity measurements from cold-test gyrotron data to produce
a phasefront solution calculated via the irradiance moment tech-
nigue. The accuracy of these results is shown to be comparable with
that obtained from the previously developed iteration method.
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Index Terms—Gaussian beam, gyrotron, irradiance moments,
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I. INTRODUCTION

M ICROWAVES generated from a gyrotron in high-ordeFig. 1. Gyrotron internal-mode converter schematic.
waveguide modes must be transformed into a low-order

symmetrical mode for transmission and application. Either aa common approach to design the phase correctors is to use

Vlasov launcher [1] or its modification, a rippled-wall Denisovyjher analytical or numerical techniques to approximate the
L;’:lunchhedr [f]’ radlateshthe _mlcrowavg energy hextracated gollgdiation pattern emitted from the launcher. Attempts have been
unched electrons. The microwave beam is then shape e, for example, to model the radiated fields generated from
directed using a series of internal mode converter reflectqys, 1 1eq.wall launcher [5]. However, experimental results
comprised of phase correctors and simple focusing MIMOESe shown that the measured field profile does not agree

The configuration shown in Fig. 1, which represents the Iayow‘]-th predicted beam behavior at the gyrotron window [3]. The
ofa 1-MW 110-GHz gyrotron [3], uses a system of two doublygisrenancies between theory and experiment may occur from

curved reflectors /1 and M2) and two phase-correcting ;o jems with launcher alignment or from problems with the
reflectors (/3 and AM4) [4]. After the resultant beam Propa-|5 ncher theory itself.

gates through the output window, the beam typically undergoes]_

additional phase correction and/or focusing to further convert o fully account for the field radiated from the internal mode

) X . converter, cold-test intensity measurements are taken initially,
it to a Gaussian beam. Gaussian beams are advantageous . .
without the presence of an electron beam in vacuum, using a

since they may be focused and redirected using simple optiﬁ? h-order mode generator. The low-power quasi-optical mi-

components. Additionally, the beam profile of a Gaussian bea :
. o crowave beam radiated from the launcher can be used to de-
matches well with the fundament&lE;;-mode profile in a

: sign the correcting mirrors. These mirror designs, however, re-
corrugated waveguide. . i .
quire knowledge of the free-space propagation behavior of the
beam, characterized by both the amplitude and phase. While
Manuscript r_ecelved February 18, 2001; revised May 23, 200;. This que amplitude profile can be directly measured at low power
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Planes M4 phasefront, which is predominately parabolic, but with addi-
tional higher order phase aberrations. The coefficients of the
polynomial are calculated from the weighted moments based
on intensity distributions over several measurement planes. Al-
though employed in optics for applications such as character-
izing the beam quality of high-power multimode lasers [17],
this numerical method, to our knowledge, has never before been
applied to the phase retrieval of a microwave beam. The mi-
crowave problem is recognized as more difficult than optical
applications because of diffraction.
Fig. 2. Cold-test measurement plane schematic near the location of theln the following sections, the theory behind the irradiance
gyrotron window. moment technique will be briefly presented, along with the gen-
eralized approach for retrieving the phase. The success of this

dotted lines, lie immediately before and after the window loc&cheme is then demonstrated numerically using both a simple
tion where the beam is the narrowest (the beam waist) [6]. In tke@Ussian beam and previously generated gyrotron cold- test
actual cold test, the window is omitted from the setup. Examplégta. The final section will discuss future developments for the
of discretely sampled measured data on a series of planesig@gdiance moment technique.
presented in Section V. Alternatively, in the hot test, in which
high-power microwaves are generated from an electron beam,ll. PHASE-RETRIEVAL BASED ON MOMENT TECHNIQUES
data can be taken on a series of planes beyond the window pla
with an infrared camera viewing a microwave absorbing screg
Several methods have been developed to retrieve the
crowave output phase based on intensity measurements.
more traditional approach, based on the Gerchberg—Saxton
mulation [7], uses an iterative algorithm. This method attem
an initial approximation of the phase at the first measureme
plane and then propagates this paraxial beam forward to
next measurement plane using a Fourier transform inter-pl
wave propagation routine [8]. Using the assumed phase of
resultant beam with the measured intensity at this plane,
beam is then propagated back to the initial plane. The initi

Measurement /7\ proach assumes an initial two-dimensional (2-D) polynomial
I
|
I
i

"Phe basic idea behind any phase-retrieval method is to de-
Brmine the initial phase from intensity measurements near the
am waist. While commonly used Gerchberg—Saxton iteration
hods rely on repeatedly improving an initial phase approx-
Mation to reduce amplitude error [9], the irradiance moment
chnique attempts to solve the initial phase polynomial coeffi-
Ents from the weighted moments. Both approaches make use
resnel diffraction theory to propagate the beam, assuming
& beam is linearly polarized and propagates paraxially. How-
r, the iteration method advances the amplitude and phase
the beam, whereas the irradiance moment technique propa-

LS o tes the moments of the beam. Using the moment approach, we
phase approximation is then modified to compensatg for t sent the relationship between the phase at a fixed plane and
error between the measured qqd reconstructed amplltudesi diance moments propagating orthogonally from this plane.
[10]. Through numerous repetmons th_e ph_a_se_solunon gen rIfhough this relationship is generally nonlinear, we may form
ally converges until the amplitude error is minimized [10], [11 a set of solvable relations from the linear terms of the moments.
This error-reduption approach, known as the i.teratic.)n mthg\ er calculating the moments and predicting how they propa-
(or “phase-retrieval method”_), aIth_ough numencall_y Intensiv ate, we then apply these linear relations to determine the phase.
has proven to be successful in designing accurate internal ph o be consistent with the geometry shown in Figs. 1 and 2, we
correcting mirrors [6], [12] and external mirrors [12]-[14]. ’

An added advant £ using intensit i will assume the paraxial beam propagates alongttigection.
N added advantage ot using Intensity measurements IS §g,  ayis is reserved as the axis of the gyrotron. The behavior

valuable information gained from computing the normalizegf the wave at a particular axial locatignwhich includes am-

weighted T“Ome”ts' or ex.pe(.:t.ation values. The moments ﬁfﬁ‘udeAy and phase,,, can be described by its wave function,
useful to improve the reliability of the data and for phasgr omplex amplitude), wherey («, y, 2) = A, (x, 2)¢'®s @)
1 1 IV~ Y Eiad .

retrieval, especially when the data set is taken using an infrare he moments of the wave function are based on the normal-
camera in hot tests, since phase-retrieval methods are typlcﬂ% weighted intensity integrated over the finite measurement

sensitive to_ m|saI|gnment. Since measuremenfts at dlffercgpéne at an axial location. They are defined as
planes require moving the camera and target, alignment errors

are not uncommon. Moreover, the work space is typically )

limited, which forces frequent repositioning of the system. In My, (y) = (2"2%), = // ab21 A (x,y)dedz (1)

[15], the moments of infrared images of gyrotron radiation were

calculated to determine the accuracy of the spatial alignmentvadfiere the integration is performed over &k and=’s.

the images. The iterative phase-retrieval procedure and interndl is important to note that a numerical approximation of the

mirror synthesis [6] were employed using only the well-aligneidradiance moment technique (and, indeed, of any phase-re-

images. trieval method relying on intensity measurements) must be
A phase-retrieval algorithm based solely on these momemtside from the fact that the measurement planes are finite.

may prove to yield even more accurate results while being coifheoretically, the moments are calculated by integrating over

putationally more efficient [16]. This “irradiance moment” apan infinite plane. For the integrals in the irradiance moment



1528 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 50, NO. 6, JUNE 2002

technique to be completely accurate, the amplitude at the plan&rom (3) and (4), we can show that the linear coefficient of
edges must be zero. In practice, beam information outside of tiey moment ordefs,,,, which measures the slope of the mo-
plane limits is lost. This truncation introduces an error into thaent at the retrieval plane, may be expressed as a product of the
calculation of the moments, particularly higher order momentsitial intensity and weighted initial phase derivative integrated
For example, if a Gaussian beam is truncated to 20 dB belower thexz-plane

the peak value, then the error in the fourth-order moments is

over 10%. If the measurements are truncated to 28 dB, tm%}])

error decreases to 2%. Of course, if the measurement plane is 1/ f 909 @, , . 90D . )
chosen very large, such that the truncation is at 35 dB, then = ~ // dr dz [%%(i 2) + =5, @) A
the fourth-order moment error is a very small number, around (5)

0.5%.

The Kirchhoff-Huygens diffraction integral in its Fresnel ap- 5 set of linear equations may be created from the linear
proxim.afcipn describesr_:lparaxial beam at any distance in terfi§ment coefficients by assuming an appropriate form for
of the initial wave function [18] the phasefront. For a spatially directed microwave beam,
the phasefront can be expanded as a 2-D polynomial at the

(@, y’f,z) reference transverse £)-plane with coefficients;;
= )\L // dx’ d' [z/)(a:’, 0,2") ) )
Y Qo(x,2) = drox + Porz + P200” + Pr122 + o2z
2 2
X exp <—ik[($/ _ $)2+(Z/_Z )] )] +¢z02® +.... (6)
Y

2 The series in (6) converges for beams decaying exponentially
@ . e Lo .

in the transverse direction. One way to show this is by applying
where) is the wavelength ankd = 2 /X is the wavenumber. By the uniform stationary phase method [21].
applying the definition of moments [see (1)] to the diffraction The linear moment coeﬁicienté?](,é) are linear functions
integral, we can show how the moments change as the beaiithe phase expansion coefficients and the initial amplitude

propagates [19], [20] as follows: moments, represented here as the intercept coeﬁic@iﬁs
whereCI(,g) = M,,(0). This linear dependence is shown in
Mpq () the example provided in the Appendix. Linearized equations
A Ata are formed because, from (5) and the selection of a suitable
={—1i= dx dz |¥(x,0,2) ) _
k polynomial phasefront expansion, the slope of each moment

K(2? +2%) propagating irny is linear with respect to the phase expansion
X exp <_'L 2 )} coefficients in the transverse £)-plane.
2, .2 The phasefront expansion @, must be truncated to form
k(z® + = ))} 3)

ar 91 . . : . .
X oo {z/)*(a;, 0, 2) exp <'LT a set of solvable linear equations from the expressions relatmg
) § the linear moment coefficients to the phase coefficients. This
whered(z,0,2) = Ag(z, z)c®(®2) is the analytic complex @pproximation is valid due to the fact that the gyrotron beam
amplitude at the initia{y = 0) plane andy*(z,0, ») is its 1S directed and paraxial. For well-behaved paraxial beams, the

complex conjugate. This formula yields an expression for tihasefront described by (6) is primarily parabolic and nearly
propagation behavior of the moments. Furthermore, it relates §¥énmetrical. Therefore, thgo, and ¢o coefficients are the
moments at any given axial location to the initial phase. Explictominant terms in the polynomial phasefront expansion. Higher

expressions are listed in the Appendix for the first- and secorffder aberrations are included to provide an accurate phasefront
order moments. solution. Generally, the solution is more accurate if many phase

From (3), the momen#/,,,(y) is, in general, a one-dimen- €xpansion terms are included. As mentioned earlier, however,
sional polynomial along the direction of propagatigrwith ~ the series in (6) will converge for directed beams. Only the first

orderp + ¢ and coeﬁicientsﬁf,;") as follows: fe_w higher order phas_e expansion terms are necessary to pro-
vide an accurate solution.
Pty Pty The set of equations is closed and solvable by requiring that
Myq(y) = Mpg(0) + Y Ciy™ = 3~ Ciy™. () the maximum moment order of the calculated lin€y; coef-
m=1 m=0 ficients orC,(,}I) be equal to the order of the truncated 2-D trans-

are determined Verse plane phase expansiondig, which is defined asV. In

by a combination of the initial amplitude and phase and thef"€r WOrds,(p + @max = (i + j)max = N. The number
derivatives integrated over the measurement plane. In practigb&guations that are formed is simply the summation of the
the data set is analyzed by finding a seriesf, values at sev- nUmber of unknown phase expansion coefficients. Since each
eral planes along. The calculated/,,, values are then applied (¢ TJ)th expansion irb, has: + j + 1 coefficients

to a one-dimensional polynomial fit into obtain the moment N

polynomigl coeffi_cient;’]éZo up t0m_ =p+q the polynomial Number of Equations= Z(n +1) = —N(N +3) . )
order. This technique is illustrated in Section IV. 2

The moment polynomial coefficients’y”

n=1
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The phase is calculated by first truncating the phasefront atStep 7) Find a linear analytical expression for each of the

the initial plane®, to orderN, which specifies the number of linear moment coefﬁcienus*]%) from step 5interms
phase expansion coefficients;. The moments\/,,(y) are di- of the phase expansion coefficienis from step 6
rectly calculated from intensity measurements at several planes and the moments at the initial plaaé,,,(0) repre-

y for everyp andq up top + ¢ = N. Each of these mo- sented bﬁ;fqn_

ments is then fitted ovey to a one-dimensional polynomial of  Step 8) Solve the set of linear equations for the phase expan-
orderp + ¢ to determine the moment CoeffiCiel’(fégl) up to sion coefficientsp;; using the moment coefficients

m = p + ¢. Only the linear coeﬁicients’](,é) and the coeffi- from the polynomial moment fits ip.

cients of zero ranKJI()?I), which represent the slope and moment

intercept, respectively, are required to form a series of linear V. IRRADIANCE MOMENT RESULTS TECHNIQUE
equations, which ultimately determine the phase expansion co- GAUSSIAN BEAM

efficients.

Since each of the moments is fitted oyeto polynomials of
orderp + g, the number of planeg/(data) required by the ir- The advantages and limitations of the irradiance moment ap-
radiance moment technique must be at lgastq + 1. Since proach are demonstrated by testing the algorithm with both an
(P + Qmax = (¢ + J)max = N, then the minimum number of ideal Gaussian beam and a series of existing measured gyrotron
planes isV + 1 for an Nth order 2-D polynomial phasefrontintensity data. The results obtained from the iteration method
solution. More data planes may be used to insure a better ndée also presented for comparison.
ment fit and, thus, a more accurate solution. If fewer planes arg-or the ideal Gaussian case, a beam is chosen lith
used, however, the solution is indeterminate and an errone®/3 cm and a waistvg of 2.0 cm aty = 0. Five planes con-
solution may occur. Since there will not be enough data in thigining discretized ideal Gaussian amplitude data are generated
instance to fit to the moment polynomials, the solution will ndior the phase-retrieval calculations @at= 20, 30, 40, 50, and
be unique. 60 cm. After the phase is retrieved at the initial plane 20 cm,

After the phasefront has been determined at the initile amplitude and computed phase are propagated to an obser-
plane, external reflectors may be designed to correct for thation planey = —30 cm. A propagation routine based on
phase and amplitude of the gyrotron output, and to effectivetlye 2-D discretized fast Fourier transform calculates the beam
couple power to the fundamentdlE;; mode of a corrugated wave function at any axial location given the initial amplitude
waveguide for guided transmission. In the procedure of rand phasefront solution. The reconstructed complex amplitude
flector synthesis, we can take advantage of the irradiangethe observation plane may then be compared with the theo-
moment-method approach’s phasefront solution, which is jgtical Gaussian amplitude and phase.
analytical form. Therefore, the numerical procedure of phasesince five amplitude planes are used in the irradiance moment
unwrapping, required for reflector synthesis using the iteratiqechnique phase-retrieval algorithm, it is possible to assume a
method [6], is not needed using irradiance moments. THisyrth-order phasefront 2-D polynomial at the initied= 20 cm
improves the mirror shaping because phase unwrappingpigne. However, this expansion is not necessary since the phase-
ambiguous. front of an ideal Gaussian beam is parabolic and will not con-

tain higher order aberrations. A second-order phasefront poly-
[ll. OUTLINE OF THE IRRADIANCE MOMENT APPROACH nomial (N = 2) is more appropriate for the calculations. A

The procedure for finding a unique phasefront solution usir?&t of five linear equations [see (_7)] based on the five first- and
the irradiance moment technique is fairly straightforward. THECONd-order moments are required to solve the unknown phase

general steps for finding alth order unique phase solution isCOEfMCIENtSP10, Po1; @20, P11, andeoz. These equations are de-
as follows. rived explicitly in the Appendix. Note that this algorithm in prin-

Step 1) Normalize all the measured intensity planes suEWlpf requires only three data planes_ S"N’e.: 2. Five planes )
that Moo(y) = 1 at eachy location. are included to provide more data with which to accurately fit

Step2) Calculate the momend,,,(y) numerically at each the moments and to be consistent with the other example in this
prq

plane, including the initial planéy = 0) by ap- Section. o
plying a discrete integration routine to the weighted To understand how the irradiance moment approach works

A. Ideal Gaussian Beam

amplitude data. in this simple Gaussian case, we must examine the behavior of
Step 3) Generate a one-dimensional polynomial fiyiof —the moments. The first-order momenith, and Mo are mea-

orderp + ¢ for the M,,, moment. sures of the expectation values(a} and(z), respectively. They
Step 4) Repeat steps 2 and 3 for each mondépj up to indicate where the center of the beam is located. For the ideal

p+qg=N. Gaussian case, they are at zero for all planes since the beam

Step 5) Propagate the moments analytically by applyirfpes not drift. The values of the linear polynomial coefficients
Fresnel diffraction theory. Specifically, the lineaare zero everywhere, i.e., the slopes are ¢y = C§y) = 0)
moment coefficientsC’.) must be expressed inand the intercepts are zet6'y = CSY = 0).
terms of the initial phase [ see (5)]. The second-order momenids, M;1, and My, are not as

Step 6) Expand and truncate the initial phaseftbntas an simple to understand. Physically, these moments represent the
Nth order 2-D polynomial in the z-plane. size of the beam i and z. For a symmetric beam\/y; =
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Fig. 3. Second-ordef\/s, moments are fitted to a quadratic in The

coefficients of the fit originated at the retrieval plane<t 20 cm) are listed in - rjg 4. Mid-plane ideal Gaussian intensity profile at the observation plane

the plot. (y = —30 cm) is compared with the reconstructed amplitudes using the
iteration method and irradiance moment technique near the edge of the beam.

0 everywhere since there is no coupling betweemnd .
The coefficients for this moment polynomi;-,a(])ﬁ)7 Oﬁ), and below—40 dB. This is not surprising since the iteration method
CS)) are zero. The other second-order momédtg andAf,, attempts to reduce the error below an acceptable tolerance level,
follow a quadratic describing the beam growth over distancghereas the moment method provides a more exact one-step
The calculatedis, moments at each of the five planes ar@umerical solution.
shown in Fig. 3. Note the predictedi/so moment value at
y = 0 cmis 1.0 cm, which accurately reflects the beam waigf. Gaussian Beam With Uncorrected Offset Measurement
(wo = 2.0 cm). Error

As seen in the example in Fig. 3, the polynomial coefficients

of each moment at the phase-retrieval plape<( 20 cm) are While the ideal Gaussian case confirms the validity of the ir-

easily determined. Recall onlyf(,g) andCI(,é) are needed to cal- radiance m_oment approach, itis a tr|V|aI_ exercise. More insight
may be gained from manufacturing a simple case where mea-

culate the phasefront. " h 4 E in the f f shifted
The irradiance moment 2-D phasefront solution that uses t%%remen error has occurred. L£rrors in the form ot shitted or

fitted moment coefficients in the set of five linear equations 2 S.e; date& are comrIlon when u§|rt19 Ia}zor?pry dew;:eststt:]ch as
b10 = dor = 0, dao = doa = 0.0914 cm2, andey; = 0. The an infrared camera to measure intensity. It is important, there-

calculated phasefront gt= 20 cm has the form fore, to examine how such an error affects the phase-retrieval
process.
To examine offset error, the same five planes containing ideal
Gaussian amplitude data are used as in the previous example.
fE}Lror is introduced at theg = 40 cm plane, where the beam is

Po(x,2) = (0.0914 cm ?)z? + (0.0914 cm™ )22, (8)

From the radius of curvature formula based on the theory
Gaussian optics, the phasefront should have the following so
tion:

ifted in thex-direction by+0.7 cm, a distance greater than
Wo wavelengths. Such a shift is not physical since the beam
must travel in a straight line, yet the error could occur in an
2ky experiment if an infrared camera and viewing screen were mis-
m' ©) gllgned. As befo.rg,.a second-order polynomial phasefront form
° is solved at the initiafy = 20 cm plane.

Evaluating this expressiongt= 20 cm using the givenbeam  Since the beam is shifted/1o(y) is zero for ally, except at
parameters yieldgso = po2 = 0.0914 cm2. Therefore, by ¥ = 40 cm, whereM; (40 cm) = 0.7 cm. The best linear fit of
testing the moment method with artificial Gaussian beam dathe first-orderMio or (x) moment is also shifted to reflect the
we have verified that the irradiance moment technique producdBgreased average value over all fi¥h, moments. Therefore,
an accurate solution for this simple example. while the C%) coefficient or slope does not change, ﬁé‘g)

The intensity at the observation plang £ —30 cm) was Vvalue is raised slightly to the averaged value of g, mo-
reconstructed using the phasefront computed by the irradiafi@ents, i.e., 0.14 cm. Since there is no shift in theirection,
moment approach, as described above. In addition, we obtaidda (¥) is still zero everywhere.

a phasefront solution by applying the iteration method algorithm Since the introduction of an offset error does not change the
to the artificial Gaussian data. The reconstructed intensity baséee of the beam, the second-order moments are exactly the same
on this converged solution was also calculated at the observatignbefore. Thelly, moments, for example, follow a smooth
plane. The results of both methods are compared in Fig. 4. Béadratic with or without an offset in the data (Fig. 3).

algorithms accurately reconstruct the amplitude, although thad Céé) coefficients that are determined from this fit do not
irradiance moment approach produces a more accurate bedrange.

(/)20 = (/)02 =
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C. Gaussian Beam With Corrected Offset Measurement Error

Although the results of the previous case including offset
measurement error are not dramatically different from the
. ideal case, it is possible to correct these errors by examining
the moments. This error-correcting feature of the irradiance
moment technique is its main advantage over other phase-re-
trieval methods. For example, thid;o moment aty = 40 is
easily identified as measurement error since it is not physically
\ possible for the beam centroid to travel in a path other than a
%\ straight line. The intensity at this plane may be shifted in the
/| | = lteafonMeth.] {1\ —z-direction such that thé/; ; (40 cm) moment is aligned with
-2 -1 0 1 2 the other four moments. The phase retrieved by the irradiance

x (cm) moment approach in this corrected case reverts back to the

original solution obtained using the ideal Gaussian beam [see
Fig. 5. Intensity profiles near = 0 at the observation plane reconstructegsgg]_
from the irradiance moment technique and the iteration method for the c . . . . .
where offset measurement error has occurred aj the40 cm plane. It is also possible to improve the irradiance moment phase

solution by selective data omission. If the= 40 cm plane is not
) _included in the data set, only four planes are used to retrieve the
The phasefront solution computed from the set of equatiopfase. These four planes, however, will still be able to produce
using the artificial data with offset becomes the ideal Gaussian second-order polynomial phasefront solution
since the data set will now lack measurement error.

'
-
T

Intensity (dB)

)

— (Gaussian
----- Moment Tech.

®o(z,2z) = —(0.026 cm™)z + (0.0929 cm™?)2?
+(0'0914 cm_2)z2. (10) V. IRRADIANCE MOMENT TECHNIQUE RESULTS
CoLD-TEST GYROTRON DATA

Note that, in (10), there is a term linearirthat arises from ~ The irradiance moment approach is further explored by
the offset error and is missing in the ideal case of (8). The phd§&ting the algorithm with measured gyrotron intensity data.
solution now has a slight tilt and asymmetry. Namely, the input is taken from the cold test results of a

The theoretical Gaussian intensity at the observation plangi®/W 110-GHz gyrotron built by Communications and Power
again compared with the reconstructed amplitude obtained fréffustries (CPI), Palo Alto, CA. The discretely sampled data
the irradiance moment technique (Fig. 5). A phasefront solfprm a set pf eight intensity measurements at various locations
tion and reconstructed intensity were also obtained by applyiﬁ m the Mndow;; = _m’ —9,0,5, 1,0’ 20,40, 60 cm (Fig. 6).
the iteration method algorithm to the same data. The iteratié e paraxial beam radiated by the internal mode converter (see

method intensity profile is shown for comparison. 9. 1) is centered atr, 2) = (0cm,37.4 cm), which is on

Although the beam that is reconstructed using the irradian@e > W't.h the window center. . .
In principle, a seventh-order polynomial phase expansion

moment algorithm has little width distortion, it does shift in the

positivex-direction, albeit by a small amount. To understandthmay be applied to the algorithm since eight planes are avail-

reason this shifting occurs in the irradiance moment hasefréaole' However, the phasefront is only expanded to fourth-order
. 9 : P = 4) to simplify the system to a set of 14 equations [see
solution, each moment must be examined. As mentioned earl

. o 1. In addition, the accuracy of a seventh-order polynomial
the second-order moments do not change with the addltlonrﬂ ment fit, which would be required for a seventh-order 2-D

an offset error. The first-order moment polynomial fits, on thﬁhasefront solution, would be limited using only eight data
other hand, are altered when an offset error occurs at one MU nes

more planes. In this case, thé,o (40 cm) momentincreases 0 1, fing the solution to a unique fourth-order 2-D phase ex-

0.7 cm due to the:-direction shift in the beam centroid at thatpansion with the irradiance moment approach requires at least
plane. _ o _ N +1 orfive planes. To obtain accurate polynomial fits of the
The reconstructed profile from the iteration method in Fig. garious moments, the first seven planes are used in the calcula-
is shifted more noticeably in thez-direction and the width tjgns. The phase is retrieved at the initigé —10 cm) plane by
more distorted than the irradiance moment reconstructed Pfi&ing each moment to an appropriate polynomiajinsing the
file. The shift arises from a tilt introduced in the phasefrordeyen planes. Itis convenient here to reserve thediralo cm
solution at the initial plane as part of the iteration algorithm’glane as the observation or check plane.
attempt to compensate for the offset plane. The width distor-After the initial phase is constructed, the approximated wave
tion arises from the ellipticity of the beam seen by viewing thinction may then be propagated from the= —10 cm plane
superposition of nonconcentric circles. In addition, more noigging the measured initial intensity and the 2-D phasefront ex-
is present due to the fact that the algorithm has difficulty copansion computed from the irradiance moment technique. To
verging to a unigue solution for this case. In fact, for offset megest the accuracy of the solution computed by the fourth-order
surement errors greater than three wavelengths, the iterationakdiance moment scheme, the beam is advanced to the obser-
gorithm does not converge at all. vation planey = 60 cm. A normalized erro# is then calcu-
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Fig. 6. Contour intensities of the eight measurement planes are shown from (b)

the CPI gyrotron in a cold test. The window center isat 37.4 cm,x =
0 cm. Contours of constant intensity are at 3-dB intervals from peak. All axi&ig. 7. (a) Measured intensity contour plot at the observation plane
distanceg; are referenced from the window plane. y = 60 cm. The left half of (b) is the reconstructed intensity using the
irradiance moment approach and the right half is the reconstructed intensity
. using the iteration method.
lated between the method’s computed amphtﬂé”é(az, z)and

the measured amplitudé|™ (z, z) at this plane

2
‘ff dx dzAéc)(x, z)Aém)(x, 2)

E=1- 5 5 -
J [ dxdz Al (z,2) J [ dxdz AU (2, 2) _ )
(11) 3
2 4
Applying the error equation to the beam that was recon- E, (/
structed from the irradiance moment technique, we fihd= = 1 H -
0.019 aty = 60 cm. Using the same data in the iteration method . 1”.' —— Veasured I
algorithm, the error® is 0.015. Both methods yield a very 2541 ! —— Moment Tech. T
small error at the observation plane, with the iteration method i ';u' —— lteration Meth. i ;
error somewhat smaller than the error from the irradiance -30 ; 4 2 o 5 4 ';‘4!
moment approach. While this result is not immediately obvious x (om)

in a comparison of the reconstructed intensity contour plots at

y = 60 cm (Fig. 7), the intensity profiles along thetransverse Fig. 8. y = 60 cm profile at mid-plane is shown alongfor the measured and

direction shown in Fig. 8 demonstrate that the irradiané@constructed intensities.

moment phasefront solution predicts a slightly narrower beam

at the observation plane than measured. It is evident from the first- and second-order moments in
The reason the reconstructed beam has a narrower waist that/;, and M»,, shown in Fig. 9, that at least some measure-

expected (Fig. 8) may be explained by the second-order mment error has occurred since the seven first-order moments do

ments, which indicate the beam size. The quadratic fitle§, not precisely follow a linear fit and the seven second-order mo-

for example, if extended to the observation plane, predictsm@nts do not follow a perfect quadratic fit. This error is reflected

lower moment value than the moment value of the measurey experimental inaccuracies in both the beam drift and size

intensity pattern. The reason for this discrepancy is small mesd-several (or all) planes. These measurement errors limit the

surement errors. overall accuracy of the moment-method phasefront solution.
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As discussed in this paper, the irradiance moment technique
01 CP=-0.153 1 is a powerful tool for determining the accuracy of the images
C=0.00454 ) used in a phase-retrieval analysis. In this paper, t.he example of
’ a gyrotron cold test beam was found to have relatively small er-
rors. In that case, the retrieved phase is quite accurate. There
is very little improvement in accuracy, if any, to be gained by
attempting to reject data planes that are slightly misaligned. In
previous work on external phase correcting mirrors for a gy-
rotron in use at the large helical device (LHD) stellarator, Na-
tional Institute for Fusion Science, Toki, Japan, we found that a
s s large improvement was possible if planes that were out of align-
y (cm) ment were rejected. That work is described in [15].
@ While initial results indicate the effectiveness of the irradi-
ance moment approach, modifications may be made to enhance
the algorithm and improve its performance. A nonlinear ap-
©=1.15 proach to solving the phase coefficients may increase the ac-
O = _0.00472 curacy of the solution. This nonlinear irradiance moment tech-
o_ . nigue would require the moment coefficients of higher rank dis-
=0.000623 carded in the linear version. Finally, an “iterative irradiance mo-
ment method” may be developed, which incorporates ideas from
both phase-retrieval algorithms. These topics could be the sub-
ject of future research.

The present examples show that the irradiance moment
technique, previously limited to phase-retrieval problems in
1 . . - - the optical regime, can be successfully applied to retrieving the
-10 0 10 20 30 40 . ) o

y (cm) phase of microwave beams. It is a promising new approach to
(b) an old problem. This method may become a novel and powerful

numerical method to predicting gyrotron beam behavior and
Fig. 9. Beam centroij) is plotted versus propagation distanceén (a) and

the beam sizéx?) is plotted versug in (b). These points must lie on astralghtShapmg phase correcting mirrors. However, further research
line and quadratic, respectively, with the deviation indicating experimental errés. Needed to estimate the accuracy of the technique, including
research on random noise, more complex measurement errors,

It should be mentioned that the results obtained by the irra&llr-]d beams with more complex amplitude forms.

ance moment algorithm may also be improved if the 2-D phase-
front solution is expanded to fifth or sixth order. While the mea-
surement errors would not be reduced, the addition of higher
order aberrations could compensate for these inaccuracies. Sughere, we will present an example of the irradiance moment
approaches, however, would require increasingly large and cu@chnique using the first- and second-order moments. After the
bersome sets of equations. The effectiveness of adding highffments are expanded in terms of the initial phase, the initial
order terms to the phasefront expansion is questionable.  phasefront is expanded and substituted into the expressions. Fi-
nally, the linear set of equations is obtained after the phasefront

VI. CONCLUSION is properly truncated.
Deriving explicit expressions for the moments is straightfor-

M10 Value (cm)

M, Value (cnf)
L

1.5+

APPENDIX
FIRST- AND SECOND-ORDER MOMENTS

The theory and general method for retrieving the phase of brd. The first- and second-order momefist q) < 2 are as
gyrotron beams based on weighted amplitude moments Elaﬁ f 2
been presented. In addition, the success of this moment met 1375 [ from (2)}:
has been demonstrated by testing the algorithm with an ideal
Gaussian beam, a Gaussian beam with one offset plane, antf1o y) = (@)
with measured data. Furthermore, the irradiance moment ap- = M1(0) — J //d dva O A2(z, 2)
proach has been benchmarked against the previously developed k
iteration method. The amplitude errors produced from theMo1(¥) = (z)
irradiance moment approach were comparable with those from - M ——//d dx od oAQ( 2)
the iteration method in each case even without error correction. o i

The main advantage of the phase-retrieving irradiance mo4f,(y) = (z?)

ment technique is its ability to locate and compensate for signifi- %0 5

cant measurement errors. In addition, the irradiance moment ap- = M30(0 // dx dz [ -4 }
proach produces an analytical solution and eliminates the need 5
for computationally intensive iterative calculations to produce +?J_ //d d <_0> +A§ <%)
accurate results. Ox Ox
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My (y) = (z2)
ad ad
= M;11(0 ——//da:d7[ af)A?J K aoAQ}
0Py 0P
//dxd7 52 0 aVOAg
Moa(y) = (2*
= M2(0 / / dx dz [7 %A‘Z}

y A , [ 0%0\*
L o | [ =22 A2 (220
+k2//da:d7 <8z>+0<8z

Note that, by definition},,(0) = 1. By generalizing and re-
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o = -7 [¢lo//dxd7 (242) + o1 //dm; (2A2)
+20m [ [ dvds (w2a3)
+</)11//dxdz(x2+z2)A2
+ 202 / / dr dz (22A3) +- }

iy = —% [%l / / da dz (2A2) +¢1 / / dx dz (z2AZ)
+2</)02//da:dz (22A3)+--}.

naming the coefficienté’S;” [see (4)], these five moments are Recognizing that the integrations in the equations relating

restated as

Mio(y) = Cf) + Cfy

Mo (y) = Cé?) + Céi)

Mao(y) = CL) + C5y + C5v
Myi(y) = C(O) + C(l)u + C(Q)L 2
Mox(y) = C’ég) C’éé)y + O(g)yQ-

The moment coefficients required for the irradiance moment al(j(l) =_
gorithm 52 andCtY are determined from the data by fitting

each moment to its appropriate polynomial.

C](,}I) to the initial phase are the moments at the initial plane,
the coefficients can be restated as follows:

O =~ [#10+ 2620Ms0(0)+ . Mo (0)++ ]

O = =3 [ +611 Mio(0)+ 202 Moy (0)+-]
O = - %[%oMm )+ 26020 M20(0)+ 11 M1 (0)+- - -]

10 Mo (0) 01 Mo (0)+ 20 M1 (0

+ P11 (Mao(0)+ Mo2(0)) 4202 M11(0)+- - -]

Continuing our example, the following are expressions forC(l) __= [¢01M01( )+ ¢11 M11(0) 4 2¢h02 Moo (0)+- - - ].

the linear(n = 1) moment coefficients of the momenig,,,,
where(p + ¢) < 2 [also derivable from (5)]:

o
0§3>_——//d dva 0 42

2
C(SP_——//d dva 0

[ 8<I>
1 [ 0P 8<I>
Cﬁ):——//da:dz T 820A(2) 5 OAQ}
ad
(1):__//da:d7 8;:0 0}.

By substituting the 2-D polynomial expansion for the phase
[see (6)], the linear moment coefficients in our example become

) = —% o / / do dz A2+ 220 / / d dz (¢ AZ)
+¢11//da:dz (2A3)+..}

oY = —% pon / / dx dzA2+p11 / / d dz (xAZ)
+ 2po2 //da:dz (2A3) + _
op=-2 1o / / de dz (2A3) + 20 / / d dz (22 A2)

+ ¢11 //da:dz (a:zA(Q))—i—

A further simplification may be made by substituting in the
coefficients of zero rank in place of the moments at the initial
plane since, from (4)Cpq = M,,(0). Finally, the phasefront
is truncated to the appropriate order, in this c88ekr ¢)max =
(1 + j)max = IN = 2. The set of equations then becomes

Ci(l)) = —% [¢10 + 2</)200158) + ¢110(§?)}

O((ﬁ) = —% [%1 + </)110£8) + 2¢02C(§?)}

Céé) = % [¢ 0CLY + 202005 + </)110$)}
% [d)wcé?) + po1CLy) + 220CLY

+ ¢11 (Cég) + Cég)) + 2</)020£?)}
2
C(()é) =% [%1082) + </>11C$) + 2¢020(§2)} .

This set of equations is linear and solvable. After the moment
coefficientsC,(,g) and C,(,}I) are computed from the data, the
phase coefficient®:q, ¢o1, ¢20, P11, and¢g2, which describe
the initial parabolic phasefront, are then easily obtainable.
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